7 resultados para Cytoskeleton

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The type III secretion system (T3SS) encoded by the Salmonella pathogenicity island 2 (SPI2) has a central role in systemic infections by Salmonella enterica and for the intracellular phenotype. Intracellular S. enterica uses the SPI2-encoded T3SS to translocate a set of effector proteins into the host cell, which modify host cell functions, enabling intracellular survival and replication of the bacteria. We sought to determine whether specific functions of the SPI2-encoded T3SS can be transferred to heterologous hosts Salmonella bongori and Escherichia coli Mutaflor, species that lack the SPI2 locus and loci encoding effector proteins. The SPI2 virulence locus was cloned and functionally expressed in S. bongori and E. coli. Here, we demonstrate that S. bongori harboring the SPI2 locus is capable of secretion of SPI2 substrate proteins under culture conditions, as well as of translocation of effector proteins under intracellular conditions. An SPI2-mediated cellular phenotype was induced by S. bongori harboring the SPI2 if the sifA locus was cotransferred. An interference with the host cell microtubule cytoskeleton, a novel SPI2-dependent phenotype, was observed in epithelial cells infected with S. bongori harboring SPI2 without additional effector genes. S. bongori harboring SPI2 showed increased intracellular persistence in a cell culture model, but SPI2 transfer was not sufficient to confer to S. bongori systemic pathogenicity in a murine model. Transfer of SPI2 to heterologous hosts offers a new tool for the study of SPI2 functions and the phenotypes of individual effectors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress induced premature senescence (SIPS) in mammalian cells is an accelerated ageing response and experimentally obtained on treatment of cells with high concentrations of H(2)O(2), albeit at sub-lethal doses, because H(2)O(2) gets depleted by abundant cellular catalase. In the present study diperoxovanadate (DPV) was used as it is known to be stable at physiological pH, to be catalase-resistant and to substitute for H(2)O(2) in its activities at concentrations order of magnitudes lower. On treating NIH3T3 cells with DPV, SIPS-like morphology was observed along with an immediate response of rounding of the cells by disruption of actin cytoskeleton and transient G2/M arrest. DPV could bring about growth arrest and senescence associated features at 25 mu M dose, which were not seen with similar doses of either H(2)O(2) or vanadate. A minimal dose of 150 mu M of H(2)O(2) was required to induce similar affects as 25 mu M DPV. Increase in senescent associated markers such as p21, HMGA2 and PAI-1 was more prominent in DPV treated cells compared to similar dose of H(2)O(2). DPV-treated cells showed marked relocalization of Cyclin D1 from nucleus to cytoplasm. These results indicate that DPV, stable inorganic peroxide, is more efficient in inducing SIPS at lower concentrations compared to H(2)O(2). (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the important issues in the development of hydroxyapatite (HA)-based biomaterials is the prosthetic infection, which limits wider use of monolithic HA despite superior cellular response. Recently, we reported that ZnO addition to HA can induce bactericidal property. It is therefore important to assess how ZnO addition influences the cytotoxicity property and cell adhesion/proliferation on HA-ZnO composite surfaces in vitro. In the above perspective, the objective of this study is to investigate the cell type and material composition dependent cellular proliferation and viability of pressureless sintered HA-ZnO composites. The combination of cell viability data as well as morphological observations of cultured human osteoblast-like SaOS2 cells and mouse fibroblast L929 cells suggests that HA-ZnO composites containing 10 Wt % or lower ZnO exhibit the ability to support cell adhesion and proliferation. Both SaOS2 and L929 cells exhibit extensive multidirectional network of actin cytoskeleton and cell flattening on the lower ZnO containing (=10 Wt %) HA-ZnO composites. The in vitro results illustrate how variation in ZnO content can influence significantly the cell vitality, as evaluated using MTT biochemical assay. Also, the critical statistical analysis reveals that ZnO addition needs to be carefully tailored to ensure good in vitro cytocompatibility. The underlying reasons for difference in biological properties are analyzed. It is suggested that surface wettability as well as dissolution of ZnO, both contribute to the observed differences in cellular viability and proliferation. (C) 2011 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cell cycle phase at starvation influences post-starvation differentiation and morphogenesis in Dictyostelium discoideum. We found that when expressed in Saccharomyces cerevisiae, a D. discoideum cDNA that encodes the ribosomal protein S4 (DdS4) rescues mutations in the cell cycle genes cdc24, cdc42 and bem1. The products of these genes affect morphogenesis in yeast via a coordinated moulding of the cytoskeleton during bud site selection. D. discoideum cells that over-or under-expressed DdS4 did not show detectable changes in protein synthesis but displayed similar developmental aberrations whose intensity was graded with the extent of over-or under-expression. This suggested that DdS4 might influence morphogenesis via a stoichiometric effect - specifically, by taking part in a multimeric complex similar to the one involving Cdc24p, Cdc42p and Bem1p in yeast. In support of the hypothesis, the S. cerevisiae proteins Cdc24p, Cdc42p and Bem1p as well as their D. discoideum cognates could be co-precipitated with antibodies to DdS4. Computational analysis and mutational studies explained these findings: a C-terminal domain of DdS4 is the functional equivalent of an SH3 domain in the yeast scaffold protein Bem1p that is central to constructing the bud site selection complex. Thus in addition to being part of the ribosome, DdS4 has a second function, also as part of a multi-protein complex. We speculate that the existence of the second role can act as a safeguard against perturbations to ribosome function caused by spontaneous variations in DdS4 levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are ``dry'' systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or ``wet'' systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interferon-gamma (Ifn gamma), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifn gamma to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifn gamma, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/ nitric oxide adduct (DETA/NO), and Nos2(-/-) mice identified Nitric oxide (NO) induced by Ifn gamma as a key regulator of aggregation of APECs. Further studies with Nos2(-/-) APECs revealed that some Ifn. responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifn gamma and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifn gamma contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifn gamma and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or ``group behavior'' of APECs are discussed in the context of host resistance to infectious organisms.